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Well definedness Suppose we have another local frame
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This Thm provides a different point of view to understand connections
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Parallel Transport

Given a connection D on TI E M defines covariant derivative
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Affine Connections Chern 84.2

Def A connection D on the tangent bundle TM is called

an affine connection

Note a general theoryof connections on vector bundle applies

But often more non linear
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Alternatively one can look at the
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Note Given an arbitrary affine connection D on TM

it may not be torsion free

BUT 7 D affine equivalent to D and D is torsion free
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Remark 9 only non degenerate pseudo Riemannian

Fundamental Thm of Riem Geometry
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