MATH 5067 Lecture on 311112020

Recall:	$\pi : E \rightarrow M^{m}$ vector bundle, one consider	
"from the bundle" $6L(r)$		
$\pi^*(u) \in F(E) \Rightarrow (p, \xi)$	where $\xi = (S_1, ..., S_r)$ basis? for E_p	
$W_n \leftarrow \frac{1}{n}$	$\frac{1}{n}$	
Thus is an example of "Principal GL(r) -bounded".		
$W \times GL(r)$	$U \subseteq M^{m} \Rightarrow P$	\exists free right GL(r) - action on $F(E)$
W of the general $\frac{1}{2}$ (i.e., $\frac{1}{2}$)		
W of the general $\frac{1}{2}$ (ii.e., $\frac{1}{2}$)		
W of the general $\frac{1}{2}$ (iii), $\frac{1}{2}$ (iv) $\frac{1}{2}$ (iv) $\frac{1}{2}$ (iv) $\frac{1}{2}$ (v) $\frac{1}{2}$ (vi) $\frac{1}{2}$ (vi) $\frac{1}{2}$ (v) $\frac{1}{2}$ (vi) $\frac{1}{2}$ (vi) $\frac{1}{2}$ (v) <math< td=""></math<>		

Parallel Transport

Given a connection D on
$$
T : E \rightarrow M
$$
. \rightarrow defined by a function
\n
$$
\frac{E_{\rho}}{S} = \frac{E_{r(t)}}{S(t)}
$$
\n
$$
\frac{E_{\rho}}{S(t)}
$$
\n $$

this leads to the notion of holonomy group:

$$
\frac{1}{\frac{1}{\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{1+\frac{1}{\sqrt{1+\frac{1}{1+\frac{1}{\sqrt{1+\frac{1}{1+\frac{1}{\sqrt{1+\frac{1}{1+\frac{
$$

$$
P_{\gamma}: E_{p} \rightarrow E_{p} \in GL(E_{p})
$$

Define: $H_{p}(0) := \{ P_{\gamma} | \gamma \text{ loop at } p \} \subseteq GL(E_{p})$

Some Remarks: (i) $H_p \approx H_q$ Vp. $q \in M$ (up to conjugate) cii, $Dg \equiv o \Rightarrow H_p \in O(E_p)$ (iii) D flat \Leftrightarrow $H_p = \{1\}$ locally

 $Def²$: A connection D on the tangent bundle TM is called an affine commection.

Note: . general theory of connections on vector bundle applies.

- But often "more non-linear"
\n
$$
= 3 (x'_1,...,x''_1, s_1,...,s_r)
$$
\n
$$
= 3 (x'_1,...,x''_1, s_1,...,s_r)
$$
\n
$$
= 3 (x'_1,...,x''_1)
$$

called geodesic

In local coord, this is $\frac{d^2x^k}{dt^2}$ + $\sum_{j,k=1}^m T_{ij}^k$ ($x(t)$) $\frac{dx^i}{dt}\frac{dx^j}{dt} = 0$ \qquad $\$ (short-time existence uniqueness

 $D - f^2$: Given an affine connection D on TM , define its torsion to be

$$
\top : \mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M)
$$

$$
\top (X,Y) := D_X Y - D_Y X - [X,Y]
$$

Easy Facts: T is tensorial in both X and Y \cdot T is skew-symmetric (ie. $T(Y, x) = -T(x, y)$) $T \in T(\Lambda^2TM \otimes TM)$ ⇛

Alternatively, one can look at the
\n
$$
\frac{1}{1 + \text{form}} = \frac{1}{1 + \text
$$

Note: Given an arbitrary affine connection D on TM. it may not be torsion free B u T , \exists D' affine equivalent to D , and D' is torsion-free Why: Ex: $D'_x Y := D_x Y - \frac{1}{2} T(x, Y)$ [ie. $T_0^k = \frac{1}{2} (T_0^k + T_0^k)$] Prop: (Existence of normal coordinates at $\rho \in M$) Let D be an affine connection on TM. $T(p) = 0$ $\langle z \rangle$ \exists local coord. x' , x'' of M , centered at p.
at some p \in M s t. D_{2i} ?j (p) = 0 V i.j =1,..., m st D_{2i} ³ (p) = 0 \forall *i*, j = 1, ..., m s Sketch of Proof s . ζ trivial "=>" (Similar to the proof of general $E \rightarrow M$) $E x$: $\overrightarrow{\Gamma}_{ij}^k = \sum_{p} \left(\frac{\partial \tilde{x}^k}{\partial x^p} \frac{\partial^2 x^p}{\partial x^i \partial x^j} \right) + \sum_{\alpha, \gamma} \left(\frac{\partial \tilde{x}^k}{\partial x^q} \frac{\partial x^{\beta}}{\partial x^j} \frac{\partial x^r}{\partial x^i} \right) \overrightarrow{\Gamma}_{ij}^p$ define: $X^h = \tilde{X}^h - \frac{1}{2} T_{ij}^h(\mathbf{0}) \tilde{X}^i \tilde{X}^j$ $Def²$: (M^m, g) Riemannian manifold is a C^{∞} manifold M^{∞} with a fiber metric g on IM (positive definite) Remark: 9 only non-desenerate - pseudo-Riemannian Fundamental Thm of Riem Geometry Given a Riem. mfd (M,g) . $\exists !$ connection D on TM st. $Dg \equiv O$ metric-compatible $\begin{cases} u \equiv 0 \end{cases}$ "Levi-Civita"/"Riemannian $T \equiv 0$ torsion-free) connection

n